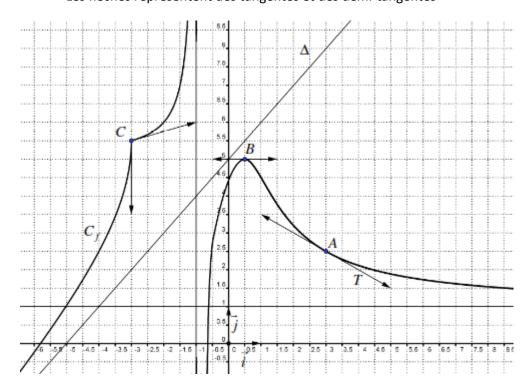
Exercice 1: (6points)

Ci-dessous la courbe représentative d'une fonction f telle que :

- Δ une asymptote à \mathcal{C}_f au voisinage de - ∞
- y = 1 une asymptote au voisinage de $+\infty$
- x = -1 asymptote verticale
- Les flèches représentent des tangentes et des demi-tangentes



- 1. Ecrire l'ensemble de définition de f et les intervalles sur lesquels elle est continue.
- 2. Ecrire l'équation de Δ
- 3. Utiliser le graphique pour calculer les limites suivantes :

a.
$$\lim_{x \to +\infty} f(x)$$
; $\lim_{x \to -\infty} f(x)$; $\lim_{x \to -1^+} f(x)$; $\lim_{x \to -1^-} f(x)$

a.
$$\lim_{x \to +\infty} f(x)$$
; $\lim_{x \to -\infty} f(x)$; $\lim_{x \to -1^+} f(x)$; $\lim_{x \to -1^-} f(x)$
b. $\lim_{x \to -\infty} (f(x) - 2x)$; $\lim_{x \to +\infty} \frac{3}{1 - f(x)}$; $\lim_{x \to -\infty^+} \frac{f(x) - 5,5}{x + 3}$; $\lim_{x \to \frac{1}{2}} \frac{2x - 4}{f(x) - 5}$

- 4. Donner les valeurs suivantes : f(3) ; f'(3) ; $f'(\frac{1}{2})$; $f'_{d}(-3)$ et écrire une valeur approchée de f(3,001)
- 5. Calculer les limites suivantes : $\lim_{x \to -3^-} \frac{f(x) 5.5}{3+x}$; $\lim_{x \to -5^+} \frac{1+f(x)}{1-f(x)}$
- 6. Dresser le tableau de variation de f et préciser ses extrémums locaux

Exercice 2: (6points)

I/ Soit f la fonction définie par : $f(x) = \frac{x^2 + 3x}{x - 1}$ On désigne par C_f la courbe représentative de f dans un repère orthonormé $(0, \vec{i}, \vec{j})$

- 1) Montrer que f est dérivable sur $\mathbb{R}\setminus\{1\}$ et que $\forall x\in\mathbb{R}\setminus\{1\}$ on a $f'(x)=\frac{(x^2-2x-3)}{(x-1)^2}$
- 2) a) Déterminer les points de C_f où la tangente est parallèle à la droite (O, \vec{t}) .
- b) Déterminer les points de C_f où la tangente est parallèle à la droite Δ : y = -3x + 1
- II/ Soit la fonction , définie sur \mathbb{R} par : $\begin{cases} g(x) = f(x) & \text{si } x \leq 0 \\ g(x) = \sqrt{x^2 + 2x} & \text{si } x > 0 \end{cases}$
- 1) Montrer que g est continue en 0.
- 2) Etudier la dérivabilité de *g* en 0 et interpréter le résultat graphiquement.
- 3) a) Justifier que g est dérivable sur chacun des intervalles $]-\infty$, 0[et]0, $+\infty[$ et calculer $g^{'}(x)$ sur chacun de ces intervalles.
 - b) Déterminer le signe de g'(x) sur chacun des intervalles $]-\infty$,0[et]0,+ ∞ [
 - c) Dresser le tableau de variation de g ,.
- 4) Déterminer les extrémums de g et préciser leurs natures.

Exercice 3:(6points)

Soit $f(x) = 2\cos 2x + 7\sin x - 5$ où $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$

- 1. Vérifier que : $f(x) = 0 \Leftrightarrow 2y^2 7y + 3 = 0$, où y = sinx
- 2. Montrer que : $f(x) = 0 \Leftrightarrow sin x = \frac{1}{2}$
- 3. Résoudre dans $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, l'équation : f(x) = 0.

Exercice 4: (5points)

Les parties I/ et II/ sont totalement indépendentes

- I/ 1. Montrer que : $2\cos 2x \cdot \cos 4x \cos x \cos 3x = 2\cos 2x(\cos 4x \cos x)$.
 - 2. Résoudre dans \mathbb{R} puis dans $[0,\pi]$ l'équation : $2\cos 2x \cdot \cos 4x = \cos x + \cos 3x$
- II/ Soit $x \in R$. Posons $\Phi(x) = \sin^6 x + \cos^6 x + 3\sin^2 x \cdot \cos^2 x$
 - 1. Montrer que $\Phi(x)$ est un réel constant.
 - 2. Vérifier que $\sin^6 x + \cos^6 x = \frac{7}{16} \Leftrightarrow \sin^2 x \cdot \cos^2 x = \frac{3}{16}$

Posons $\alpha = \sin^2 x \ et \ \beta = \cos^2 x$

- 3. Montrer que α et β solutions de l'équation $y^2 y + \frac{3}{16} = 0$
- 4. Résoudre dans \mathbb{R} l'équation : $\sin^6 x + \cos^6 x = \frac{7}{16}$